The tropic hormones (effect endocrine glands) that are released are:
- Thyroid-stimulating hormone (TSH)
- Adrenocorticotropic hormone (ACTH)
- Follicle-stimulating hormone (FSH)
- Luteinizing hormone (LH)

Activity of the Adenohypophysis

- Produced by somatotropic cells of the anterior lobe that:
 - Stimulate most cells
 - But target bone and skeletal muscle
 - Promote protein synthesis and encourage the use of fats for fuel
 - Most effects are mediated indirectly by insulin-like growth factors (IGFs) (somatomedins)
 - Control uptake of amino acids (proteins) and sulfur (for chondroitin sulfate - cartilage)

Growth Hormone (GH)

- Antagonistic hypothalamic hormones regulate GH
 - Growth hormone–releasing hormone (GHRH)
 - Stimulates GH release
 - Growth hormone–inhibiting hormone (GHIH)
 - Inhibits GH release
Metabolic Action of Growth Hormone

- GH stimulates
 - Liver, skeletal muscle, bone, and cartilage
 - To produce insulin-like growth factors
 - Direct action promotes lipolysis and inhibits glucose uptake

Growth Hormone Abnormalities

- Hypersecretion
 - Gigantism
 - In children before epiphyseal plates close
 - Results in elongation of long bones
 - Due to pituitary tumor
 - Acromegaly
 - In adults after epiphyseal plates close
 - Enlarges and thickens bones
 - Chronic hyperglycemia
 - Diabetes mellitus and atherosclerosis
Growth Hormone Abnormalities

- Hyposecretion
 - Pituitary dwarfism
 - In children
 - Delayed growth of long bones
 - Early closure of epiphyseal plates
 - Organs fail to grow
 - Slowed development of adult reproductive function
 - Progeria
 - In children
 - Genetic origin
 - Rapid premature ageing
 - Degenerative changes after first year

Thyroid Stimulating Hormone (Thyrotropin)

- Tropic hormone
 - Stimulates the normal development and secretory activity of the thyroid gland
 - Response to low triiodothyronine (T_3) and thyroxin (T_4)
 - Triggered by thyrotropin-releasing hormone (TRH)
 - Hypothalamic peptide
 - Rising blood levels of thyroid hormones (T_3, T_4)
 - Act on the pituitary and hypothalamus to block the release of TSH
 - Blocked by somatostatin (GHIH)

Adrenocorticotropic Hormone (Corticotropin)

- Stimulates the adrenal cortex to release corticosteroids
 - Most typically glucocorticoids such as cortisol
 - Help resist stress
 - Triggered by hypothalamic corticotropin-releasing hormone (CRH) in a daily rhythm
 - Internal and external factors such as fever, hypoglycemia, and stressors can trigger the release of CRH
 - Negative feedback
 - High levels of ACTH triggers hypothalamic corticotropin-inhibiting hormone (CIH)
Gonadotropins

- Gonadotropins
 - Follicle-stimulating hormone (FSH) and luteinizing hormone (LH)
 - Regulate the function of the ovaries and testes
 - Stimulates gamete (egg or sperm) production
 - Absent from the blood in prepubertal boys and girls
 - Triggered by the hypothalamic gonadotropin-releasing hormone (GnRH) during and after puberty
 - Response to
 - Females: low estrogen, progesterone, inhibin
 - Males: low testosterone, inhibin

Functions of Gonadotropins

- In females
 - LH works with FSH on follicular cells
 - To cause maturation of the ovarian follicle (oogenesis)
 - LH works alone on thecal cells
 - To trigger ovulation (expulsion of the egg from the follicle)
 - Promotes synthesis and release of estrogens and progesterone
 - Maintains corpus luteum
 - Negative feedback
 - High estrogen, progesterone, inhibin
 - Hypothalamus releases gonadotropin inhibiting hormone (GnIH)

- In males
 - LH
 - Stimulates interstitial cells of the testes to produce testosterone
 - Also referred to as interstitial cell-stimulating hormone (ICSH)
 - FSH
 - Stimulates sustentacular cells of seminiferous tubules
 - Initiates spermiogenesis
 - Negative feedback
 - High testosterone and inhibin
 - Hypothalamus releases GnIH
Prolactin (PRL)

- In females, prolactin release
 - Triggered by prolactin-releasing hormone (PRH) from hypothalamus
 - Stimulates milk production by alveolar cells of the breasts
 - Negative feedback control
 - Inhibited by prolactin-inhibiting hormone (PIH) from hypothalamus
 - Low blood estrogen triggers PIH
 - Breastfeeding and high blood estrogen
 - Stimulates PRH release and encourages continued milk production
 - Positive feedback!

The Posterior Pituitary (neurohypophysis)

- Posterior pituitary
 - Made of axons of hypothalamic neurons
 - Stores antidiuretic hormone (ADH) and oxytocin
 - ADH and oxytocin are synthesized in the hypothalamus
 - ADH influences water balance
 - Oxytocin stimulates smooth muscle contraction in breasts and uterus
 - Both use PIP-calcium second-messenger mechanism

Oxytocin

- Oxytocin
 - Made in paraventricular nucleus (PvN)
 - Strong stimulant of uterine contraction
 - Regulated by a positive feedback mechanism to oxytocin in the blood
 - Uterine stretching causes myometrial cells to send impulses to PvN
 - Leads to increased intensity of uterine contractions, ending in birth
 - Oxytocin triggers milk ejection (“letdown” reflex) in women producing milk
 - Myoepithelial cells contract
Oxytocin

- Synthetic and natural oxytocic drugs
 - Used to induce or hasten labor
 - Plays a role in sexual arousal and satisfaction
 - In males and nonlactating females(?)

Antidiuretic Hormone (ADH)

- ADH
 - Produced in supraoptic nucleus
 - Regulates water levels
 - Helps to avoid dehydration or water overload
 - Prevents urine formation
 - Conserves water
 - Osmoreceptors monitor the solute concentration of the blood
 - Or low blood volume, low blood pressure
 - With high solutes
 - ADH is synthesized and released, thus preserving water
 - With low solutes
 - ADH is not released, thus causing water loss from the body
 - Alcohol inhibits ADH release and causes copious urine output

Antidiuretic Hormone

- ADH
 - Targets kidney tubules and collecting ducts
 - Locations of water reabsorption
 - Negative feedback
 - High blood volume, high blood pressure, low solute concentration
 - Inhibit ADH release
 - Hyposecretion
 - Diabetes insipidus
 - High urine output
 - Increased thirst
 - Hyponatremia - low blood sodium
 - Hypersecretion
 - Increased thirst
 - Hyponatremia - low blood sodium
Thyroid Gland

- The largest endocrine gland
- Located inferior to larynx on anterior trachea
- Consists of two lateral lobes connected by a median tissue mass called the isthmus
- Composed of follicles
 - Follicular cells produce the glycoprotein thyroglobulin
- Colloid
 - Fills the lumen of the follicles
 - Thyroglobulin + iodine
 - Precursor of thyroid hormone
- Parafollicular cells
 - Produce the hormone (thyro)calcitonin

Thyroid Hormone

- Thyroid hormone
 - The body’s major metabolic hormone
- Consists of two closely related iodine-containing compounds
 - \(T_4 \) – thyroxine (90%)
 - Two tyrosine molecules plus four bound iodine atoms
 - \(T_3 \) – triiodothyronine (10%)
 - Two tyrosines with three bound iodine atoms
Chapter 16: Endocrine System

Effects of Thyroid Hormone

- Three effects of Thyroid hormone
 1. Regulation of metabolism
 - 60-100% increase
 - Anabolism
 - Protein synthesis
 - Catabolism
 - Carbohydrate and lipid breakdown
 - \(\uparrow \) glucose catabolism + \(\uparrow \) oxygen consumption = \(\uparrow \) ATP production = \(\uparrow \) basal metabolic rate = \(\uparrow \) heat production

- Regulation of growth and development
 - With HGH and insulin = \(\uparrow \) growth and development

- Maintenance of normal nervous system function
 - Large role in fetal and newborn nervous system development
 - Fetal hypothyroidism - fewer neurons, defective myelination
 - Mental retardation
 - Child hypothyroidism - small stature, decreased organ development

Synthesis of Thyroid Hormone

- Thyroglobulin
 - Synthesized and discharged into the lumen of follicle
 - Iodides (I\(^-\))
 - Actively taken into the cell
 - Oxidized to iodine (I\(_2\)), and released into the lumen
 - Iodine attaches to tyrosine, mediated by peroxidase enzymes, forming T\(_1\) (monoiodotyrosine, or MIT), and T\(_2\) (diiodotyrosine, or DIT)
 - Iodinated tyrosines link together to form T\(_3\) and T\(_4\)
 - Colloid is then endocytosed from colloid back to cells
 - Combined with a lysosome, where T\(_3\) and T\(_4\) are cleaved and diffuse into the bloodstream
Synthesis of Thyroid Hormone

- T_4 and T_3
- Bind to thyroxine-binding globulins (TBGs) produced by the liver
- Transported as protein-bound iodine (PBI)
- Both bind to target receptors
 - But is ten times more active than T_4
 - T_3 may
 1. Bind membrane receptor
 2. Enter cell and bind nuclear receptor
 3. Enter cell and bind mitochondria, \uparrow O2 uptake

Transport and Regulation of TH

- T_4 and T_3
- Bind to thyroxine-binding globulins (TBGs) produced by the liver
- Transported as protein-bound iodine (PBI)
- Both bind to target receptors
- But is ten times more active than T_4
- T_3 may
 1. Bind membrane receptor
 2. Enter cell and bind nuclear receptor
 3. Enter cell and bind mitochondria, \uparrow O2 uptake

- Peripheral tissues convert T_4 to T_3
- By removal of one iodine
- Mechanisms of activity are similar to steroids
- May up-regulate specific protein synthesis
- Negative feedback
 - Falling TH levels trigger TSH from adenohypophysis
 - Rising TH feeds back to inhibit hypothalamic-adenohypophyseal axis
 - Shut off TSH release
 - Hypothalamic thyrotropin-releasing hormone (TRH) can overcome the negative feedback
 - For pregnancy and infant cold exposure

Chapter 16: Endocrine System
Thyroid Disorders

- Hypothyroid disorders
 - Myxedema
 - Adult hypothyroidism
 - Swollen, puffy face, and dry skin
 - \(\text{\(\downarrow \) heart rate = \(\downarrow \) metabolic rate = \(\downarrow \text{body temp} \) } \)
 - Constipation
 - \(\downarrow \text{mental alertness} \)

- Hypothyroid Disorders
 - Goiter (endemic or colloidal)
 - \(\downarrow \text{iodine} \)
 - Follicles increase in size due to filling with unusable colloid
 - Leads to continued high TSH in the blood
 - Stimulates more unusable colloid
 - Glandular collapse

- Hypothyroid Disorders
 - Cretinism
 - Child myxedema
 - Looks like adult hypothyroidism patient
 - Round face, thick nose/tongue/neck
 - Mental retardation
 - Dwarfism
 - Inhibited sexual development
 - All non reversible
 - Treat with thyroid hormone replacement
Hyperthyroid Disorders

- Graves Disease
 - Autoimmune due to presence of thyroid gland stimulating antibodies (TSAb’s)
 - Antibodies stimulate thyroid hormone overproduction
 - ↑ metabolic rate, excessive perspiration, ↓ weight
 - ↑ heart rate/pulse/body temp, moist flushed skin
 - Treatment
 - Surgery or radioactive iodine to destroy most active thyroid cells

Hyperthyroid Disorders

- Exophthalmic goiter
 - Overactive thyroid due to tumor
 - Enlarged thyroid gland from being overworked
 - Protruding eyes due to post-ocular edema
 - As in Graves

(Thyro)Calcitonin

- Thyrocalcitonin
 - A peptide hormone produced by the parafollicular, or C, cells
 - Lowers blood calcium levels in children
 - Antagonist to parathyroid hormone (PTH)
Calcitonin

- Targets the skeleton, where it:
 - Inhibits osteoclast activity
 - And thus bone resorption
 - And release of calcium from the bone matrix
 - Stimulates calcium uptake and incorporation into the bone matrix
 - Regulated by a humoral negative feedback mechanism
 - Calcium ion concentration in the blood
 - Directly acts on thyroid gland
 - No input from pituitary on feedback
 - ↓ calcium resorption in the kidney tubules
 - ↓ calcium absorption in small intestine

Parathyroid Glands

- Tiny glands embedded in the posterior aspect of the thyroid
 - ~ Four
 - Cells are arranged in cords containing oxyphil and chief cells
 - Chief (principal) cells secrete PTH
 - Oxyphil cell function unknown
 - PTH (parathormone) regulates calcium balance in the blood
 - Antagonist of calcitonin
Effects of Parathyroid Hormone

- PTH release
 - Increases Ca\(^{2+}\) in the blood as it:
 - Stimulates osteoclasts to digest bone matrix
 - Enhances the reabsorption of Ca\(^{2+}\) and the secretion of phosphate by the kidneys
 - Decreases or stops Ca\(^{2+}\) secretion in kidneys
 - Increases absorption of Ca\(^{2+}\) by intestinal mucosal cells
 - Rising Ca\(^{2+}\) in the blood inhibits PTH release
 - Humoral control acts directly on parathyroid