Parathyroid Abnormalities

- Hypoparathyroidism
 - Low blood calcium
 - Due to low osteoclast activity
 - May cause spontaneous depolarization of neurons and muscle fibers
 - Treat with 100,000 daily units of vitamin D and 1-2g Ca^{2+}/day
- Hyperparathyroidism
 - High blood calcium
 - Usually due to tumor
 - Women more than men
 - Decalcifies bones
 - Muscular weakness
 - Abdominal pain and constipation

Adrenal (Suprarenal) Glands

- Adrenal glands
 - Paired, pyramid-shaped organs atop the kidneys
- Structurally and functionally
 - They are two glands in one
 - Adrenal medulla
 - Nervous tissue that acts as part of the sympathetic nervous system (SNS)
 - Adrenal cortex
 - Glandular tissue derived from embryonic mesoderm

Adrenal Cortex

- Synthesizes and releases steroid hormones
 - Called corticosteroids
- Different corticosteroids are produced in each of the three layers
 - Zona glomerulosa – mineralocorticoids (chiefly aldosterone)
 - Zona fasciculata – glucocorticoids (chiefly cortisol)
 - Zona reticularis – gonadocorticoids (chiefly androgens)
Chapter 16: Endocrine System

Adrenal Cortex

- **Mineralocorticoids**
 - Synthesized in zona glomerulosa
 - Cells in clustered balls
 - Regulate the electrolyte concentrations of extracellular fluids
 - Aldosterone – most important mineralocorticoid
 - Maintains Na⁺ balance by reducing excretion of sodium from the body
 - Effects water balance as well
 - Stimulates reabsorption of Na⁺ by the kidneys

Mineralocorticoids

- Aldosterone secretion is stimulated by:
 - Rising blood levels of K⁺
 - Low blood Na⁺
 - Decreasing blood volume or pressure
1. Renin-angiotensin mechanism
 - Effects blood volume and pressure
 - Kidneys release renin
 - In response to low blood pressure/volume
 - From juxtaglomerular apparatus
 - Converts angiotensinogen (plasma protein) into angiotensin II
 - Stimulates aldosterone release from zona glomerulosa

2. Plasma concentration of sodium and potassium: directly influences the zona glomerulosa cells
 - Increased K+ stimulates aldosterone secretion

3. ACTH: causes small increases of aldosterone during stress
 - Otherwise doesn’t effect aldosterone release

4. Atrial natriuretic peptide (ANP): inhibits activity of the zona glomerulosa

Aldosterone Related Abnormalities

- Hyperaldosteronism
 - High Na+
 - Hypertension
 - Low K+ results in hypopolarization of neuron and muscle cell membranes
 - Lowers muscle excitability
 - Leads to muscle weakness

- Hypoaldosteronism
 - Contributor to Addisons disease
 - Low Na+ and water reabsorption
 - Results in low blood volume/pressure
 - High K+
 - Heart toxicity, weakness, arrhythmia, heart failure
Chapter 16: Endocrine System

Glucocorticoids (Cortisol)
- Zona Fasciculata
- Cortisol, corticosterone, cortisone
 - Help the body resist stress by:
 - Keeping blood sugar levels relatively constant
 - Maintaining blood volume and preventing water shift into tissue
- Cortisol provokes:
 - Gluconeogenesis (formation of glucose from noncarbohydrates)
 - Rises in blood glucose, fatty acids, and amino acids

Excessive Levels of Glucocorticoids
- Excessive levels of glucocorticoids:
 - Depress cartilage and bone formation
 - Lowers osteoblast activity
 - Inhibit inflammation
 - By limiting histamine from mast cells
 - Depress the immune system (also used for transplants)
 - Macrophage lysosomes aren’t released
 - Reduces phagocytosis, chemotaxis to injury sites, fever response
 - Promote changes in cardiovascular, neural, and gastrointestinal function
 - Chronic high levels lead to Cushing’s Disease/syndrome
 - Low levels contribute to Addison’s Disease

Cushing’s Disease/Syndrome
- Chronic high levels of cortisol
 - If pituitary tumor causing hypersecretion of ACTH
 - Cushing’s Disease
 - Clinical administration of glucocorticoid drugs
 - Cushings Syndrome
Cushing’s Disease/Syndrome

- Effects of excess cortisol
 1. Protein metabolism
 - Increased catabolism, lowered anabolism
 2. Carbohydrate metabolism
 - Stimulates gluconeogenesis, results in hyperglycemia (steroid diabetes)
 3. Fat metabolism
 - Increased lipolysis causes metabolic acidosis
 4. Fat distribution
 - Central obesity
 5. Electrolytes
 - Na⁺ retention = hypertension, K⁺/H⁺ loss = hyperkalemia and metabolic alkalosis

- Immune response & inflammation
 - Suppressed antibody production, lymphoid tissue atrophy, reduced histamine production and phagocytosis
 - Over-stimulated neurons
 - Mental defects, irritability, manic-depression, impaired cognition/memory

- Gastric secretions
 - Increased HCl and Pepsinogen = ulcers

- Brain function
 - Over-stimulated neurons
 - Mental defects, irritability, manic-depression, impaired cognition/memory

- Erythropoiesis
 - Lymphoid atrophy, increased RBC production

Gonadocorticoids (Sex Hormones)

- Zona Reticularis
 - Androgens (male sex hormones)
 - Most secreted
 - Testosterone most important
 - Initially as dehydroepiandrosterone (DHEA)
 - Converted to testosterone and estrogen in body tissues
 - Androgens contribute to:
 - The onset of puberty
 - The appearance of secondary sex characteristics
 - Sex drive in females
 - Androgens can be converted into estrogens after menopause
Glucocorticoid Abnormalities

- Androgenital Syndrome
 - Hypersecretion of gonadocorticoids
 - Females and prepubescent boys most effected
 - Females
 - Masculinization of facial hair, clitoris grows to resemble small penis
 - Prepubescent boys
 - Early and rapid onset of puberty, enhanced sex drive
 - Not noticeable in adult males

Adrenal Medulla

- Made up of chromaffin cells that secrete epinephrine and norepinephrine
 - Surround blood sinuses
 - Stimulated by preganglionic fibers of autonomic nervous system (ANS)
 - Therefore very rapid
 - Epinephrine and norepinephrine
 - Catecholamines known as sympathomimetic amines
 - Secretion of these hormones causes:
 - Blood glucose levels to rise
 - Blood vessels to constrict - especially norepinephrine
 - The heart to beat faster
 - Blood to be diverted to the brain, heart, and skeletal muscle

Adrenal Medulla

- Epinephrine
 - More potent stimulator of the heart and metabolic activities
- Norepinephrine
 - More influential on peripheral vasoconstriction and blood pressure
- Abnormalities
 - Pheochromocytoma
 - Chromaffin cell tumor
 - Hypersecretion of catecholamines
 - Out of control sympathetic response
Stress and the Adrenal Gland

Figure 16.15

Pancreas

- Triangular; mixed gland
 - Both exocrine and endocrine functions
 - Located behind the stomach
- Acinar cells
 - Produce an enzyme-rich juice used for digestion (exocrine product)
- Pancreatic islets (islets of Langerhans)
 - Produce hormones (endocrine products)
- The islets contain two major cell types:
 - Alpha (α) cells produce glucagon
 - Beta (β) cells produce insulin
 - Delta (δ) cells produce somatostatin (GHIH)

Glucagon

- From alpha cells
- 29-amino-acid polypeptide hormone
- Potent hyperglycemic agent
- Its major target is the liver, where it promotes:
 - Glycogenolysis – the breakdown of glycogen to glucose
 - Gluconeogenesis – synthesis of glucose from lactic acid and noncarbohydrates
 - Increased amino acid uptake
 - Lipolysis - triglyceride breakdown
 - Release of glucose to the blood from liver cells
 - Glucagonomas - glucagon secreting tumor causes hyperglycemia
Insulin

- A 51-amino-acid protein
 - Consists of two amino acid chains linked by disulfide bonds
- Synthesized as part of proinsulin
 - Then excised by enzymes, releasing functional insulin
- Insulin:
 - Lowers blood glucose levels
 - Enhances transport of glucose into body cells
 - Especially liver and muscle cells
 - Stored as glycogen
 - glycogenesis
 - Counters metabolic activity that would enhance blood glucose levels

Effects of Insulin Binding

- The insulin receptor is a tyrosine kinase enzyme
- After glucose enters a cell, insulin binding triggers enzymatic activity that:
 - Catalyzes the oxidation of glucose for ATP production
 - Polymerizes glucose to form glycogen
 - glycogenesis
 - Converts glucose to fat (particularly in adipose tissue)
 - lipogenesis

Regulation of Blood Glucose Levels

- The hyperglycemic effects of glucagon and the hypoglycemic effects of insulin

Chapter 16: Endocrine System
Chapter 16: Endocrine System

Diabetes Mellitus (DM)

- Results from hyposecretion or hypoactivity of insulin
- The three cardinal signs of DM are:
 - Polyuria – huge urine output
 - Polydipsia – excessive thirst
 - Polyphagia – excessive hunger and food consumption
- Hyperinsulinism – excessive insulin secretion, resulting in hypoglycemia

Diabetes Mellitus (DM)

<table>
<thead>
<tr>
<th>Organ/issue involved</th>
<th>Organ/issue response to insulin deficiency</th>
<th>Resulting condition on Blood</th>
<th>Decrease in urinary output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovaries</td>
<td>Lipid synthesis and adipogenesis</td>
<td>Lipid synthesis and adipogenesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ketoacidosis</td>
<td></td>
</tr>
</tbody>
</table>

Gonads: Female

- Ovaries
 - Paired in the abdominopelvic cavity
 - Produce estrogens and progesterone
- They are responsible for:
 - Maturation of the reproductive organs
 - Production, maintenance, and maturation of oocytes
 - Appearance of secondary sexual characteristics
 - Breast development and cyclic changes in the uterine mucosa
Gonads: Male

- Testes located in an extra-abdominal sac (scrotum)
- Produce testosterone
- **Testosterone:**
 - Initiates maturation of male reproductive organs
 - Causes appearance of secondary sexual characteristics and sex drive
 - Is necessary for sperm production
 - Maintains sex organs in their functional state

Pineal Gland

- Small gland hanging from the roof of the third ventricle of the brain
- Composed of neuroglia and pinealocytes
- Contains calcium salts
- Secretory product is melatonin
- Peaks at night (10 fold)
- Melatonin is involved with:
 - Day/night cycles (circadian rhythms)
 - Physiological processes that show rhythmic variations (body temperature, sleep, appetite)
 - Most active in children
 - Inhibits gonadotropic hormone

Thymus

- Lobulated gland located deep to the sternum in the thorax
- Large and active in infants and children
 - Involuting and filled with fat in adults
- Major hormonal products are thymopoietins and thymosins
- Essential for the development of the T lymphocytes (T cells) of the immune system
 - Immunocompetency
Other Hormone-Producing Structures

- Heart
 - Produces atrial natriuretic peptide (ANP)
 - Reduces blood pressure, blood volume, and blood sodium concentration
- Gastrointestinal tract
 - Enteroendocrine cells release local-acting digestive hormones
- Placenta
 - Releases hormones that influence the course of pregnancy

Other Hormone-Producing Structures

- Kidneys
 - Secretory erythropoietin, which signals the production of red blood cells
- Skin
 - Produces cholecalciferol
 - Precursor of vitamin D
- Adipose tissue
 - Releases leptin
 - Involved in the sensation of satiety, and stimulates increased energy expenditure

Developmental Aspects

- Hormone-producing glands arise from all three germ layers
- Endocrine glands derived from mesoderm produce steroid hormones
- Most endocrine glands show structural changes with age
 - Hormone production may or may not be affected
Developmental Aspects

- Exposure to pesticides, industrial chemicals, arsenic, dioxin, and soil and water pollutants disrupts hormone function
 - Sex hormones, thyroid hormone, and glucocorticoids are vulnerable to the effects of pollutants
 - Interference with glucocorticoids may help explain high cancer rates in certain areas

Developmental Aspects

- Ovaries undergo significant changes with age and become unresponsive to gonadotropins
 - Female hormone production declines, the ability to bear children ends, and problems associated with estrogen deficiency (e.g., osteoporosis) begin to occur
 - Testosterone also diminishes with age, but effect is not usually seen until very old age

Developmental Aspects

- GH levels decline with age and this accounts for muscle atrophy with age
 - Supplemental GH may spur muscle growth, reduce body fat, and help physique
 - TH declines with age, causing lower basal metabolic rates
 - PTH levels remain fairly constant with age, and lack of estrogen in women makes them more vulnerable to bone-demineralizing effects of PTH