Overview: Plasma Membrane

- Plasma membrane
 - boundary that separates the living cell from its surroundings
- Selective permeability
 - Allowance of some substances to cross more easily than others

Cell Membrane Model

- Fluid mosaic model
 - Membrane is a fluid structure with a “mosaic” of various proteins embedded in it
 - Phospholipids
 - most abundant lipid in the plasma membrane
 - amphipathic molecules
 - contain hydrophobic and hydrophilic regions
The Fluidity of Membranes

- Phospholipids
 - Can move within the bilayer
 - Most of the lipids, and some proteins, drift laterally
 - Rarely does a molecule flip-flop transversely across the membrane

Lateral movement (∼10^7 times per second)
Flip-flop (∼once per month)
Membrane Proteins

- Peripheral proteins
 - bound to the surface of the membrane
- Integral proteins
 - Penetrate the hydrophobic core
 - Transmembrane proteins
 - Integral proteins that span the membrane
 - Hydrophobic regions of an integral protein
 - consist of one or more stretches of nonpolar amino acids
 - often coiled into alpha helices

Membrane Proteins

- Six major functions of membrane proteins:
 - Transport
 - Enzymatic activity
 - Signal transduction
 - Cell-cell recognition
 - Intercellular joining
 - Attachment to the cytoskeleton and extracellular matrix (ECM)

Membrane Carbohydrates

- Membrane carbohydrates
 - Used by cells to recognize each other
 - By binding recognition proteins to surface carbohydrates
- Glycolipids
 - Carbohydrates covalently bonded to lipids
- Glycoproteins
 - Carbohydrates bonded to proteins
 - vary among species, individuals, and even cell types in an individual
Synthesis and Sidedness of Membranes

- Membranes have distinct inside and outside faces
 - Asymmetrical distribution
 - Proteins
 - Lipids
 - Associated carbohydrates
 - Determined when the membrane is built by the ER and Golgi apparatus
 - Components on the inside of ER or Golgi vesicle
 - end up on exterior of cell membrane

The Permeability of the Lipid Bilayer

- Hydrophobic (nonpolar) molecules
 - Dissolve in the lipid bilayer and pass through the membrane rapidly
 - Such as hydrocarbons
 - But only very small ones
 - Polar molecules
 - Do not cross the membrane easily
 - Repelled by inner hydrophobic region
 - Such as sugars

Transport Proteins

- Transport proteins
 - Allow passage of hydrophilic substances across the membrane
 - channel proteins
 - hydrophilic channel that certain molecules or ions can use as a tunnel
 - Aquaporins
 - Facilitate the passage of water
Transport Proteins

- **Carrier proteins**
 - Bind to molecules and change shape to shuttle them across the membrane
 - Specific for the substance it moves

![Transport Proteins Diagram]

Transport

- **Diffusion**
 - Tendency for molecules to spread out evenly into the available space
 - Due to Brownian movement
 - Dynamic equilibrium
 - As many molecules cross one way as cross in the other direction

![Diffusion Diagram]
Types of Transport: Passive – Simple Diffusion

- Passive transport
 - No energy input required
- Simple Diffusion
 - Substances move (diffuse) down their concentration gradient
 - difference in concentration of a substance from one area to another

Types of Transport: Passive – Osmosis

- Osmosis
 - diffusion of water across a selectively permeable membrane
 - from the region of lower solute concentration
 - to the region of higher solute concentration
 - Water will follow the solutes
Water Balance of Cells Without Walls

Tonicity
- Ability of a solution to cause a cell to gain or lose water

Isotonic solution
- Solute concentration outside is the same as that inside the cell
- No net water movement across the plasma membrane

Hypertonic solution
- Solution with higher solute concentration

Hypotonic solution
- Solution with lower solute concentration

Water Balance of Cells Without Walls

- Hypertonic or hypotonic environments create osmotic problems for organisms

Osmoregulation
- Control of water balance
- Necessary adaptation for life in such environments

- The protist Paramecium
 - Hypertonic to its pond water environment
 - Has a contractile vacuole that acts as a pump

Water Balance of Cells with Walls

- Plant cell in a hypotonic solution
 - Swells until the wall opposes uptake
 - Cell is now turgid (firm)
 - If isotonic
 - No net movement of water into the cell
 - the cell becomes flaccid (limp)
 - Plant may wilt
Water Balance of Cells with Walls

- **Plasmolysis**
 - Hypertonic environment
 - Plant cells lose water
 - Membrane pulls away from the wall
 - Usually lethal

Types of Transport: Passive - Facilitated Diffusion

- **Facilitated diffusion**
 - Transport proteins facilitate (enable) passive movement of molecules across the plasma membrane
 - Channel proteins
 - Corridors that allow a specific molecule or ion to cross the membrane
 - Aquaporins for facilitated diffusion of water
 - Ion channels that open or close in response to a stimulus (gated channels)

Types of Transport: Active Transport

- **Active transport**
 - Moves substances against their concentration gradient
 - Requires energy
 - In the form of ATP
 - Performed by specific proteins embedded in the membranes
Types of Transport: Active Transport

- Active transport
 - allows cells to maintain concentration gradients that differ from their surroundings

- Sodium-potassium pump

Ion Pumps Maintain Membrane Potential

- Membrane potential
 - Voltage difference across a membrane
 - Voltage is created by differences in the distribution of positive and negative ions

MEMBRANE POTENTIAL: How does it get there? CHANNELS & PUMPS!
Electrogenic pump

- transport protein that generates voltage across a membrane
- sodium-potassium pump
 - major electrogenic pump of animal cells
- proton pump
 - Main electrogenic pump
 - of plants, fungi, and bacteria

Types of Transport: Active Transport - Exocytosis

- Exocytosis
 - Transport vesicles migrate to the membrane, fuse with it, and release their contents
 - Used by secretory cells to export their products

Types of Transport: Active Transport - Endocytosis

- Endocytosis
 - cell takes in macromolecules
 - by forming vesicles from the plasma membrane
 - reversal of exocytosis, involving different proteins
 - Three types of endocytosis:
 1. Phagocytosis ("cellular eating")
 2. Pinocytosis ("cellular drinking")
 3. Receptor-mediated endocytosis
Active Transport: Endocytosis - Phagocytosis

PHAGOCYTOSIS

EXTRACELLULAR FLUID

Pseudopodium

Food or other particle

Food vacuole

Bacterium

An amoeba engulfing a bacterium via phagocytosis (TEM)

Active Transport: Endocytosis - Pinocytosis

PINOCYTOSIS

Plasma membrane

Pinocytosis vesicles forming (arrows) in a cell lining a small blood vessel (TEM)

Active Transport: Receptor Mediated Endocytosis

RECEPTOR-MEDIATED ENDOCYTOSIS

Ligand

Coat protein

Coated pit

Coated vesicle

A coated pit and a coated vesicle fused with the plasma membrane during receptor mediated endocytosis (TEM)
You should now be able to:

1. Define the following terms: amphipathic molecules, aquaporins, diffusion
2. Explain how membrane fluidity is influenced by temperature and membrane composition
3. Distinguish between the following pairs or sets of terms: peripheral and integral membrane proteins; channel and carrier proteins; osmosis, facilitated diffusion, and active transport; hypertonic, hypotonic, and isotonic solutions
4. Explain how transport proteins facilitate diffusion
5. Explain how an electrogenic pump creates voltage across a membrane, and name two electrogenic pumps
6. Explain how large molecules/substances are transported across a cell membrane